3.7.42 \(\int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\) [642]

3.7.42.1 Optimal result
3.7.42.2 Mathematica [A] (verified)
3.7.42.3 Rubi [A] (verified)
3.7.42.4 Maple [B] (warning: unable to verify)
3.7.42.5 Fricas [B] (verification not implemented)
3.7.42.6 Sympy [F(-1)]
3.7.42.7 Maxima [F]
3.7.42.8 Giac [F(-2)]
3.7.42.9 Mupad [F(-1)]

3.7.42.1 Optimal result

Integrand size = 35, antiderivative size = 316 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {(i A-B) \arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}+\frac {2 b \left (5 a^2 A b+8 A b^3-3 a^3 B-6 a b^2 B\right )}{3 a^3 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {2 (4 A b-3 a B) \sqrt {\cot (c+d x)}}{3 a^2 d \sqrt {a+b \tan (c+d x)}}-\frac {2 A \cot ^{\frac {3}{2}}(c+d x)}{3 a d \sqrt {a+b \tan (c+d x)}} \]

output
-(I*A-B)*arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot 
(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/2)/d-(I*A+B)*arctanh((I*a+b)^(1/ 
2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1 
/2)/(I*a+b)^(3/2)/d-2/3*A*cot(d*x+c)^(3/2)/a/d/(a+b*tan(d*x+c))^(1/2)+2/3* 
b*(5*A*a^2*b+8*A*b^3-3*B*a^3-6*B*a*b^2)/a^3/(a^2+b^2)/d/cot(d*x+c)^(1/2)/( 
a+b*tan(d*x+c))^(1/2)+2/3*(4*A*b-3*B*a)*cot(d*x+c)^(1/2)/a^2/d/(a+b*tan(d* 
x+c))^(1/2)
 
3.7.42.2 Mathematica [A] (verified)

Time = 4.47 (sec) , antiderivative size = 301, normalized size of antiderivative = 0.95 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\sqrt {\cot (c+d x)} \left (\frac {3 \sqrt [4]{-1} a \left (\frac {(a+i b) (i A+B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {-a+i b}}+\frac {(i a+b) (A+i B) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\sqrt {a+i b}}\right ) \sqrt {\tan (c+d x)}}{a^2+b^2}+\frac {8 A b-6 a B}{a \sqrt {a+b \tan (c+d x)}}-\frac {2 A \cot (c+d x)}{\sqrt {a+b \tan (c+d x)}}+\frac {2 b \left (5 a^2 A b+8 A b^3-3 a^3 B-6 a b^2 B\right ) \tan (c+d x)}{a^2 \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}\right )}{3 a d} \]

input
Integrate[(Cot[c + d*x]^(5/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^( 
3/2),x]
 
output
(Sqrt[Cot[c + d*x]]*((3*(-1)^(1/4)*a*(((a + I*b)*(I*A + B)*ArcTan[((-1)^(1 
/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[-a 
+ I*b] + ((I*a + b)*(A + I*B)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt[Tan[c 
+ d*x]])/Sqrt[a + b*Tan[c + d*x]]])/Sqrt[a + I*b])*Sqrt[Tan[c + d*x]])/(a^ 
2 + b^2) + (8*A*b - 6*a*B)/(a*Sqrt[a + b*Tan[c + d*x]]) - (2*A*Cot[c + d*x 
])/Sqrt[a + b*Tan[c + d*x]] + (2*b*(5*a^2*A*b + 8*A*b^3 - 3*a^3*B - 6*a*b^ 
2*B)*Tan[c + d*x])/(a^2*(a^2 + b^2)*Sqrt[a + b*Tan[c + d*x]])))/(3*a*d)
 
3.7.42.3 Rubi [A] (verified)

Time = 2.08 (sec) , antiderivative size = 337, normalized size of antiderivative = 1.07, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.514, Rules used = {3042, 4729, 3042, 4092, 27, 3042, 4132, 27, 3042, 4132, 27, 3042, 4099, 3042, 4098, 104, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot (c+d x)^{5/2} (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan ^{\frac {5}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {A+B \tan (c+d x)}{\tan (c+d x)^{5/2} (a+b \tan (c+d x))^{3/2}}dx\)

\(\Big \downarrow \) 4092

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 \int \frac {4 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+4 A b-3 a B}{2 \tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {4 A b \tan ^2(c+d x)+3 a A \tan (c+d x)+4 A b-3 a B}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\int \frac {4 A b \tan (c+d x)^2+3 a A \tan (c+d x)+4 A b-3 a B}{\tan (c+d x)^{3/2} (a+b \tan (c+d x))^{3/2}}dx}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {-\frac {2 \int -\frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\int \frac {3 A a^2+3 B \tan (c+d x) a^2+6 b B a-8 A b^2-2 b (4 A b-3 a B) \tan (c+d x)^2}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}}dx}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4132

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {2 \int \frac {3 \left (a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)\right )}{2 \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {3 \int \frac {a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {\frac {\frac {3 \int \frac {a^3 (a A+b B)-a^3 (A b-a B) \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx}{a \left (a^2+b^2\right )}-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}}{a}-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}}{3 a}-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}\right )\)

\(\Big \downarrow \) 4099

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {1}{2} a^3 (a-i b) (A+i B) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx+\frac {1}{2} a^3 (a+i b) (A-i B) \int \frac {i \tan (c+d x)+1}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}dx\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

\(\Big \downarrow \) 4098

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a+i b) (A-i B) \int \frac {1}{(1-i \tan (c+d x)) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}+\frac {a^3 (a-i b) (A+i B) \int \frac {1}{(i \tan (c+d x)+1) \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}d\tan (c+d x)}{2 d}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

\(\Big \downarrow \) 104

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b) (A+i B) \int \frac {1}{\frac {(i a-b) \tan (c+d x)}{a+b \tan (c+d x)}+1}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a+i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

\(\Big \downarrow \) 216

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a+i b) (A-i B) \int \frac {1}{1-\frac {(i a+b) \tan (c+d x)}{a+b \tan (c+d x)}}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}}{d}+\frac {a^3 (a-i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (-\frac {2 A}{3 a d \tan ^{\frac {3}{2}}(c+d x) \sqrt {a+b \tan (c+d x)}}-\frac {-\frac {2 (4 A b-3 a B)}{a d \sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {-\frac {2 b \left (-3 a^3 B+5 a^2 A b-6 a b^2 B+8 A b^3\right ) \sqrt {\tan (c+d x)}}{a d \left (a^2+b^2\right ) \sqrt {a+b \tan (c+d x)}}+\frac {3 \left (\frac {a^3 (a-i b) (A+i B) \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {-b+i a}}+\frac {a^3 (a+i b) (A-i B) \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d \sqrt {b+i a}}\right )}{a \left (a^2+b^2\right )}}{a}}{3 a}\right )\)

input
Int[(Cot[c + d*x]^(5/2)*(A + B*Tan[c + d*x]))/(a + b*Tan[c + d*x])^(3/2),x 
]
 
output
Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*((-2*A)/(3*a*d*Tan[c + d*x]^(3/2)*Sq 
rt[a + b*Tan[c + d*x]]) - ((-2*(4*A*b - 3*a*B))/(a*d*Sqrt[Tan[c + d*x]]*Sq 
rt[a + b*Tan[c + d*x]]) + ((3*((a^3*(a - I*b)*(A + I*B)*ArcTan[(Sqrt[I*a - 
 b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]])/(Sqrt[I*a - b]*d) + (a^ 
3*(a + I*b)*(A - I*B)*ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + 
b*Tan[c + d*x]]])/(Sqrt[I*a + b]*d)))/(a*(a^2 + b^2)) - (2*b*(5*a^2*A*b + 
8*A*b^3 - 3*a^3*B - 6*a*b^2*B)*Sqrt[Tan[c + d*x]])/(a*(a^2 + b^2)*d*Sqrt[a 
 + b*Tan[c + d*x]]))/a)/(3*a))
 

3.7.42.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4092
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1) 
/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^ 
2 + b^2))   Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b* 
B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2 
)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n 
+ 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && 
 NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] 
&& (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] 
 || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4098
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[A^2/f   Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e + f* 
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && 
 NeQ[a^2 + b^2, 0] && EqQ[A^2 + B^2, 0]
 

rule 4099
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(A + I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 - I*T 
an[e + f*x]), x], x] + Simp[(A - I*B)/2   Int[(a + b*Tan[e + f*x])^m*(c + d 
*Tan[e + f*x])^n*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A 
, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2 + B^2, 
0]
 

rule 4132
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Tan[e + 
 f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + 
b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2))   Int[(a + b*Tan[e + 
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d* 
(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d 
)*(A*b - a*B - b*C)*Tan[e + f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Ta 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ 
[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && 
!(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
3.7.42.4 Maple [B] (warning: unable to verify)

result has leaf size over 500,000. Avoiding possible recursion issues.

Time = 2.00 (sec) , antiderivative size = 1564143, normalized size of antiderivative = 4949.82

\[\text {output too large to display}\]

input
int(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x)
 
output
result too large to display
 
3.7.42.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18876 vs. \(2 (259) = 518\).

Time = 7.08 (sec) , antiderivative size = 18876, normalized size of antiderivative = 59.73 \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="fricas")
 
output
Too large to include
 
3.7.42.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Timed out} \]

input
integrate(cot(d*x+c)**(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))**(3/2),x)
 
output
Timed out
 
3.7.42.7 Maxima [F]

\[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \cot \left (d x + c\right )^{\frac {5}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="maxima")
 
output
integrate((B*tan(d*x + c) + A)*cot(d*x + c)^(5/2)/(b*tan(d*x + c) + a)^(3/ 
2), x)
 
3.7.42.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cot(d*x+c)^(5/2)*(A+B*tan(d*x+c))/(a+b*tan(d*x+c))^(3/2),x, algo 
rithm="giac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:sym2poly/r2sym(const gen & e,const 
index_m & i,const vecteur & l) Error: Bad Argument Valuesym2poly/r2sym(con 
st gen &
 
3.7.42.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {5}{2}}(c+d x) (A+B \tan (c+d x))}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,\left (A+B\,\mathrm {tan}\left (c+d\,x\right )\right )}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

input
int((cot(c + d*x)^(5/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2),x 
)
 
output
int((cot(c + d*x)^(5/2)*(A + B*tan(c + d*x)))/(a + b*tan(c + d*x))^(3/2), 
x)